Mobile QR Code QR CODE

References

1 
H. Amano et al., “The 2018 GaN power electronics roadmap,” J. Phys. D 51, pp. 163001.1-48 (2018).DOI
2 
T. Hashizume et al., “State of the art on gate insulation and surface passivation for GaN-based power HEMTs,” Mater. Sci. Semicond. Process 78, pp. 85-95 (2018).DOI
3 
M. Kuzuhara et al., “AlGaN/GaN high-electron-mobility transistor technology for high-voltage and low-on-resistance operation,” Jpn. J. Appl. Phys. 55, pp. 070101.1-12 (2016).DOI
4 
J. T. Asubar et al., “Controlling surface/interface states in GaN-based transistors: Surface model, insulated gate, and surface passivation,” J. Appl. Phys. 129, pp. 121102.1-28 (2021).DOI
5 
O. Ambacher et al., “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys. 85, pp. 3222-3233 (1999).DOI
6 
Y. Zhao et al., “Effects of recess depths on performance of AlGaN/GaN power MIS-HEMTs on the Si substrates and threshold voltage model of different recess depths for the using HfO2 gate insulator,” Solid State Electron. 163, pp. 107649.1-10 (2020).DOI
7 
Z. Yatabe et al., “Effects of Cl2-Based Inductively Coupled Plasma Etching of AlGaN on Interface Properties of Al2O3/AlGaN/GaN Heterostructures,” Appl. Phys. Express 6, pp. 016502.1-4 (2013).DOI
8 
Z. Yatabe et al., “Interface trap states in Al2O3/AlGaN/GaN structure induced by inductively coupled plasma etching of AlGaN surfaces,” Phys. Stat. Solid. (a) Phys. 212, pp. 1075-1080 (2015).DOI
9 
A. Yamamoto et al., “Metalorganic vapor phase epitaxial growth of AlGaN directly on reactive-ion etching-treated GaN surfaces to prepare AlGaN/GaN heterostructures with high electron mobility (-1500 cm2 V−1 s−1): Impacts of reactive-ion etching-damaged layer removal,” Jpn. J. Appl. Phys. 57, pp. 125501.1-5 (2018).DOI
10 
J. T. Asubar et al., “Enhancement-Mode AlGaN/GaN MIS-HEMTs With High VTH and High IDmax Using Recessed-Structure With Regrown AlGaN Barrier,” IEEE Electron Device Lett. 41, pp. 693-696 (2020).DOI
11 
A. Yamamoto et al., “AlGaN/GaN heterostructures with an AlGaN layer grown directly on reactive-ion-etched GaN showing a high electron mobility (∼1300 cm2 V−1 s−1),” Jpn. J. Appl. Phys. 57, pp. 045502.1-5 (2018).DOI
12 
A. Yamamoto et al., “Enhancement-Mode AlGaN/GaN Vertical Trench Metal-Insulator-Semiconductor High-Electron-Mobility Transistors with a High Drain Current Fabricated Using the AlGaN Regrowth Technique,” Phys. Stat. Solid. (a) Phys. 217, pp. 1900622.1-8 (2020).DOI
13 
K. Nishiguchi et al., “Current linearity and operation stability in Al2O3-gate AlGaN/GaN MOS high electron mobility transistors,” Jpn. J. Appl. Phys. 56, pp. 101001.1-8 (2017).DOI
14 
A. Baratov et al., “Evidence of reduced interface states in Al2O3/AlGaN MIS structures via insertion of ex situ regrown AlGaN layer,” Appl. Phys. Express 15, pp. 104002.1-5 (2022).DOI
15 
Z. Yatabe et al., “Characterization of electronic states at insulator/(Al) GaN interfaces for improved insulated gate and surface passivation structures of GaN-based transistors,” Jpn. J. Appl. Phys. 53, pp. 100213.1-10 (2014).DOI
16 
Q. Wang et al., “Process dependency on threshold voltage of GaN MOSFET on AlGaN/GaN heterostructure,” Solid State Electron. 99, pp. 59-64 (2014).DOI
17 
T. Hashizume et al., “Effect of nitrogen deficiency on electronic properties of AlGaN surfaces subjected to thermal and plasma proceses,” Appl. Surf. Sci. 234, pp. 387-394 (2004).DOI
18 
H. Hasegawa et al., “Mechanism of current collapse and gate leakage currents in AlGaN/GaN heterostructure field effect transistors,” J. Vac. Sci. Technol. B 21(4), pp. 1844-1855 (2003).DOI