Circuit Techniques for Low-Power Data Drivers of TFT-LCDs

Byong-Deok Choi and Oh-Kyong Kwon

Abstract—A stepwise driving method was used for reducing the AC power consumption in a TFT-LCD. The AC power takes the largest portion of the total power consumption of a TFT-LCD. Experimental results confirmed that the AC power saving efficiency reached up to 75% when a 5-stepwise driving with each step time of 2μsec was applied to a 14.1 inch-diagonal XGA TFT-LCD. The second largest component of power consumption called the DC power comes from the quiescent currents in Op-amps. A simple and efficient architecture was proposed in this work to reduce this DC power consumption: Half of the Op-amps have the 5V-supplies, and the rest half have the 10V-supplies, and two Op-amps are shared by adjacent two channels. Measurements of test circuits showed that this simple method could reduce over 40% of the DC power consumption.

Index Terms—Low-power, Stepwise charging, TFT-LCD, Data driver

I. INTRODUCTION

As a TFT-LCD gets more and more attractive as a display device for portable appliances, extensive researches are being carried out on low-power driving methods and circuit techniques [1-4]. Because the largest power consumption source is the AC power stemming from driving data lines as presented in Table 1 [5], previous publications [1-4] have focused on new AC driving methods. Those previous methods, however, have some shortcomings: The vcom modulation method [1] is incompatible with the dot inversion method which is essential for high-quality images. The multi-field driving method [2] increases the circuit complexity, and reveals a problem with moving pictures. The charge recycling method [3] has no noticeable problem, but the AC power saving efficiency is no better than 50%. An advanced charge recycling method, called the triple charge sharing [4], of which the AC power saving efficiency is nearly 66% was proposed by the authors. This work has been intended to further increase the AC power saving efficiency.

It should be also noted in Table 1 that the DC power due to the quiescent currents of Op-amp circuits is the second largest source of the power consumption in data drivers. Accordingly, several circuit techniques of Op-amp have been reported [4,6-7] for reducing the quiescent current, among which the authors’ Op-amp [4] has the lowest quiescent current. This work also presents a very simple and efficient circuit technique for further reducing the DC power of data drivers based on the authors’ previous Op-amp [4].

II. A CIRCUIT TECHNIQUE FOR AC POWER SAVING

A. Theory of Stepwise Charging [8]

If a conventional buffer drives capacitance as shown in Fig.1, the power consumption can be calculated by equation (1).

$$ P = I_{DD,AVG} V_{DD} = f C_L V_{DD}^2 $$

(1)

where $I_{DD,AVG}$ is an average current supplied by V_{DD}, V_{DD} is the supply voltage of buffer, f is the driving
Table 1. Power Consumption Breakdown of Conventional Data Driver for TFT-LCDs.

<table>
<thead>
<tr>
<th>Image</th>
<th>Black</th>
<th>Black-White Vertical Stripe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Polarity Reversal Method</td>
<td>Line/Dot</td>
</tr>
<tr>
<td></td>
<td>Analog Quiescent Power (VDDa=10V)</td>
<td>145mW</td>
</tr>
<tr>
<td></td>
<td>Drive Digital Power (VDDd=2.5V)</td>
<td>5mW</td>
</tr>
<tr>
<td></td>
<td>Interface Bus Power</td>
<td>14mW</td>
</tr>
<tr>
<td></td>
<td>Panel AC Power</td>
<td>275mW</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>439mW</td>
</tr>
</tbody>
</table>

On the other hand, the N-stepwise charging and discharging method shown in Fig.2 can reduce the power consumption to 1/N [8]. Sequential closures of switch SW1 to SWN-1 charge the load capacitance to V1, V2, and VN-1, assuming the tank capacitances are hundreds of times larger than the load capacitance. When the VDD supply starts charging the load capacitance, the initial voltage of the load capacitance is VN-1. So, the VDD supply has only to charge the load capacitance from VN-1 to VDD instead from ground to VDD. Therefore, the current from the VDD supply to charge the load capacitance is reduced to 1/N of that of a conventional buffer, which means that the power from the VDD supply is decreased to 1/N. It should be noted that the charges supplied by the tank capacitors return to each tank capacitor during the stepwise discharging. Thus, each tank capacitor can play a role of an energy-recovery power supply. This power reduction can be explained in equation (2).

\[
P = I_{DD, AVG} \frac{V_{DD}}{N} f C_L \left(V_{DD} - V_{DD} \right) = \frac{1}{N} f C_L V_{DD}^2 \quad (2)
\]

However, in a practical sense, the power saving is somewhat lower than that given by equation (2). This is due to the power dissipation at the resistance on the data line interconnects and the on-resistance of MOSFET switches used in the stepwise driver circuit. Due to the voltage drop on the resistance components, the final voltage of the tank capacitor VN-1 converges to a value slightly lower [10] than the predicted value. Thus, the current from the VDD supply to charge the load capacitance has to be increased, causing the degradation of power saving. This phenomenon will be discussed in
Among various inversion methods of TFT-LCDs, the dot inversion method which changes the signal polarity every row line time (1H) as shown in Fig.3 provides the best image quality. Data lines of a TFT-LCD have parasitic capacitance ranging from tens to hundreds of pico farads depending on the panel size. Thus each time they are charged and discharged, which results in a quite high power consumption. This is often referred to as AC power consumption.

In order to reduce the AC power consumption in TFT-LCDs, the stepwise driving method was employed in this work. However, the stepwise data driving for a full video range is practically impossible, because the video data are different from pixel to pixel and change from row to row. Therefore, the stepwise data driving method is applied as follows in this work.

One row line time (1H) is divided into two phases, and during the first phase of a row line time polarities of even- or odd-numbered data lines are modulated to the positive or negative video range in a stepwise manner between two fixed voltage levels, V_L and V_H, as shown in Fig.4. In this case, V_L is the median voltage level of the negative video range, and V_H is that of the positive video range. Fig.5 shows the circuits and related control signals for a 5-step stepwise charging method. When the polarities are modulated from V_L to V_H level, the switch SWA is closed and the switches SW0 to SW5 are closed sequentially for stepwise charging. Since the voltage of data lines is the same as that of tank capacitor C_{T4} when V_H begins to drive data lines, the power supplied by V_H is reduced to a fifth of the power consumed when V_H
fully charges the data lines from \(VL \) to \(VH \) level. After the polarity modulation to \(VH \) level, the actual video voltages of pixels are driven by Op-amps according to their own video data during the second phase of a row line time as shown in Fig.4 and Fig.5. Consequently, the Op-amps have only to charge the data lines from \(VH \) to each pixel’s own video data voltage unlike the conventional case in which the full video voltage range has to be charged by the Op-amps. In order to drive an actual video data to each pixel, the switch \(SWB \) is closed so that the Op-amp drives the data line in Fig.5.

At the beginning of the next row line time the voltages of the data lines are set to \(VH \) level by closing the switch \(SW5 \) as marked by \(A \) in Fig.4 and Fig.5. This makes the voltage of the data lines one step-voltage higher than that of tank capacitor \(C_{T4} \) irrespective of the video data of the current row line time. Thus, during the downward polarity modulation of the next row line time the charges return from the data lines to the tank capacitors irrespective of the video data of the current row line time, and the power supplied by the tank capacitors is recovered during the downward polarity modulation.

The theoretical power saving efficiency can be easily calculated when the stepwise charging method is applied to drive TFT-LCDs. For convenience of comparison, the conventional driving circuit is presented in Fig.6 where the full video range swing is carried out by the authors’ Op-amps[4]. The AC power consumption of the conventional driving, \(P_{CONV} \) is expressed as follows:

\[
P_{\text{CONV}} = I_{\text{DD,AVG}} V_{DD} = N_{\text{DATA}} C_L V_{\text{SWING}} \frac{f_{\text{ROW}}}{2} V_{DD}
\]

(3)

where \(I_{\text{DD,AVG}} \) is the average current supplied by a power supply \(V_{DD} \), \(N_{\text{DATA}} \) is the number of data lines, \(C_L \) is the capacitance of a data line, \(V_{\text{SWING}} \) is the voltage change of \(C_L \) and \(f_{\text{ROW}} \) is the row line frequency.

On the other hand, the power consumption of the stepwise driving method, \(P_{\text{STEPWISE}} \), breaks down into
four parts as expressed in equation (4). The power supplies \(V_H \) and \(V_L \) supply currents for stepwise polarity modulation, and the power supplies \(V_{DDH} \) and \(V_{DDL} \) supply currents through Op-amps for writing the actual video voltage. As will be covered in section III, in the proposed driving scheme half of the data lines are driven by a high-voltage power supply \(V_{DDH} \) for the positive video range, and the rest half of the data lines are driven by a low-voltage power supply, \(V_{DDL} \), for the negative video range.

\[
P_{\text{STEPWISE}} = P_{V_H} + P_{V_L} + P_{V_{DDH}} + P_{V_{DDL}} = I_{VH,AVG} V_H + I_{VL,AVG} V_L + I_{V_{DDH},AVG} V_{DDH} + I_{V_{DDL},AVG} V_{DDL} \tag{4}
\]

where \(P_{V_H}, P_{V_L}, P_{V_{DDH}}, \) and \(P_{V_{DDL}} \) are the power consumption supplied by \(V_H \), \(V_L \), \(V_{DDH} \) and \(V_{DDL} \) respectively.

Referring to Fig.7, Fig.8 and Fig.9, the power consumption for black, white and median gray display is analyzed. In Fig. 7 which shows the case of black display, the power consumption by \(V_H, V_L \), and \(V_{DDH} \) occurs every second row line time as marked by A, B and C respectively. A represents the power supplied by \(V_H \) during the polarity modulation. After the polarity modulation, Op-amps (\(V_{DDH} \)) charge the data lines to \(V_{BLACK,H} \) as marked by B. After the black display in the negative video range the power supply \(V_L \) charges the data lines to \(V_L \) for polarity modulation, as marked by C in Fig.7. Therefore, equation (4) is reduced to equation (5) for the power consumption for black display.

\[
P_{\text{STEPWISE, BLACK}} = P_{V_H} + P_{V_L} + P_{V_{DDH}}
= I_{VH,AVG} V_H + I_{VL,AVG} V_L
+ I_{V_{DDH},AVG} V_{DDH} + I_{V_{DDL},AVG} V_{DDL}
= N_{\text{DATA}} C_L (V_H - V(C_{T4})) \frac{f_{\text{ROW}}}{2} V_H
+ N_{\text{DATA}} C_L (V_L - V_{BLACK,L}) \frac{f_{\text{ROW}}}{2} V_L
+ N_{\text{DATA}} C_L (V_{BLACK,H} - V_H) \frac{f_{\text{ROW}}}{2} V_{DDH}
= N_{\text{DATA}} C_L \frac{V_H - V_L}{N} \frac{f_{\text{ROW}}}{2} V_H
+ N_{\text{DATA}} C_L (V_L - V_{BLACK,L}) \frac{f_{\text{ROW}}}{2} V_L
+ N_{\text{DATA}} C_L (V_{BLACK,H} - V_H) \frac{f_{\text{ROW}}}{2} V_{DDH}
\tag{5}
\]
where N is the number of steps for polarity modulation, $V_{\text{BLACK},L}$ and $V_{\text{BLACK},H}$ are the voltage levels of black in the negative and positive voltage range respectively, and $V(C_{T4})$ is the voltage of tank capacitor C_{T4}.

For white display, the power is supplied by VH and V_{DDL} as marked by A, B and C in Fig.8. A and B represent the power supplied by VH. In case of white display, the polarity modulation to VH overcharges data lines, so after the polarity modulation the data lines are discharged to $V_{\text{WHITE},H}$ and the power supply VH recharges the data lines to VH level just before the downward polarity modulation, as marked by B in Fig.8. The downward polarity modulation to VL over-discharges the data lines, so the Op-amps (V_{DDL}) charge the data lines to $V_{\text{WHITE},L}$ for white display, as marked by C in Fig.8. These overcharge and over-discharge deteriorate the power saving efficiency for white display. Experimental results in section IV will show that the power saving efficiency for black, white and median gray display. Equation (6) expresses the power consumption for white display.

$$P_{\text{STEPWISE,WHITE}} = P_{VH} + P_{V_{\text{DDL}}}$$

$$= I_{VH,AVG} VH + I_{V_{\text{DDL}},AVG} V_{\text{DDL}}$$

$$= N_{\text{DATA}} C_L (VH - V(C_{T4})) \frac{f_{\text{ROW}}}{2} VH$$

$$+ N_{\text{DATA}} C_L (VH - V_{\text{WHITE},H}) \frac{f_{\text{ROW}}}{2} VH$$

$$+ N_{\text{DATA}} C_L (V_{\text{WHITE},L} - VL) \frac{f_{\text{ROW}}}{2} V_{\text{DDL}}$$

$$= N_{\text{DATA}} C_L \frac{VH - VL}{N} \frac{f_{\text{ROW}}}{2} VH$$

$$+ N_{\text{DATA}} C_L (VH - V_{\text{WHITE},H}) \frac{f_{\text{ROW}}}{2} VH$$

$$+ N_{\text{DATA}} C_L (V_{\text{WHITE},L} - VL) \frac{f_{\text{ROW}}}{2} V_{\text{DDL}}$$

(6)

where $V_{\text{WHITE},L}$ and $V_{\text{WHITE},H}$ are the voltage levels of white in the negative and positive voltage range respectively.
Since \(V_H \) and \(V_L \) correspond to the median gray display in the positive and negative video range respectively, no Op-amp operation is necessary as shown in Fig.9. That is, for the median gray display the power is supplied only by \(V_H \). Of course, this is a very ideal case. In reality, \(V_{DDH}, V_{DDL} \) or \(V_L \) also supplies power, if the gray scales of a display image deviate from \(V_H \) or \(V_L \). This ideal power consumption for the median gray display is obtained by equation (7).

\[
P_{\text{STEPWISE, MEDIAN}} = P_{VH} = I_{VH, AVG} V_H = N_{\text{DATA}} C_L (V_H - V(C_{T4}) f_{\text{ROW}} V_H) (7)
\]

The power saving efficiency of the stepwise driving method can be achieved using equation (3), (5), (6) and (7). Dividing equation (7) by (3), the power consumption ratio for median display is obtained. Those for white or black display are also obtained similarly. Here, for convenience, only the power saving efficiency for the median gray display is calculated. For black or white display, the experimental results will be given in section IV.

\[
P_{\text{STEPWISE, MEDIAN}} \frac{P_{\text{CONV}}}{P_{\text{CONV}}} = \frac{N_{\text{DATA}} C_L V_H - V_{VL} f_{\text{LINE}} V_H}{N_{\text{DATA}} C_L V_{SWING} f_{\text{LINE}} V_{DD}} (8)
\]

where \(V_{SWING} \) of the conventional driving method is equal to \(V_H-V_L \) for the median gray display. Assuming that the number of step is 5, \(V_{DD} \) is 10V, and \(V_H \) is 7.75V as shown in Fig.5, the power consumption ratio is theoretically 0.155, that is, the power saving efficiency is 84.5%.

C. Practical Consideration on the Stepwise Driving Method

The power saving efficiency of 84.5% is practically unattainable, because of the following two constraints. In designing the driving scheme in Fig.4, the second phase time for video data writing from \(V_H \) level to any voltage in the video range should be assigned first, and the rest of a row line time is utilized for the polarity modulation. So, the step time may not be long enough for the stepwise polarity modulation due to the parasitic resistance and capacitance of the data lines and the switches. The lack of step time leads to the incomplete stepwise charging of the data lines to each voltage level of tank capacitors. That is, if the switch SW0 is closed for insufficient step time in Fig.5, the data lines are not completely charged to 2.25V due to the parasitic resistance and capacitance, and this incomplete charging is repeated until switch the SW4 is closed, leading to accumulated mis-charging. Therefore, when the switch SW5 is about to be closed for \(V_H \) to charge the data lines, the voltage of the data lines do not reach that of \(C_{T4} \). This means that \(V_H \) has to supply a more current to charge the data lines to \(V_H \) level compared to the theoretical case in which the data lines are completely charged to the voltage of \(C_{T4} \) before \(V_H \) drives the data lines. It is clearly understood in equation (5), (6) and (7) that the power supplied by \(V_H \) is directly related to the voltage of tank capacitor \(C_{T4} \).

Another constraint is the voltage drop of the tank capacitor voltage. Because power is dissipated in the resistance of switches and data lines when the tank capacitors drive data lines, energy loss of the tank capacitors occurs, which leads to the voltage drops of the tank capacitor voltage. In addition to the incomplete charging of the data lines due to insufficient step time, this voltage drop due to energy loss of the tank capacitors further deteriorates the power saving efficiency. More specifically, in the stepwise charging the power supplied by \(V_H \) is increased, because the voltage of the tank capacitor \(C_{T4} \) drops due to energy loss, so the voltage of the data lines to be driven by \(V_H \) are also lower when \(V_H \) is about to drive the data lines. In spite of the energy loss, the proposed driving scheme uses no charge refreshing operation or circuits. Instead, as explained in section II.B, \(V_H \) plays a role of recharging the tank capacitors by charging the data lines to \(V_H \) level at the beginning of stepwise discharging.

III. A CIRCUIT TECHNIQUE FOR DC POWER SAVING

The authors previously proposed an Op-amp circuit
Fig. 10. Schematic Diagram of Output Stages of Proposed Data Driver for DC Power Saving with Control Signals

[4] with a low-quiescent current of 5 μA ~ 7 μA at 5V-supply which is the lowest among the reported results [4, 6-7]. Because a quiescent current of the proposed Op-Amp increases with the supply voltage, the DC power can be further reduced if a lower supply voltage is used.

We noted that half of the channels in a data driver circuit drive video data of a negative polarity in dot inversion method and the Op-amps driving negative video data can have a lower supply voltage. Typically the Op-amps in a data driver of TFT-LCDs have a supply voltage of 10V or higher. For negative video data, however, a supply voltage of 5V or only a little higher is enough. To realize this idea the conventional data driver circuit was slightly modified in this work. Op-amps of odd (or even)-numbered channels have a 10V-supply, and those of even (or odd)-numbered channels have a 5V-supply. Because adjacent two data lines have opposite polarities, and the signal polarity of a data line changes every row line time in dot inversion, two Op-amps can be shared by adjacent two data lines. That is, when a data line is driven to positive video data, it is driven by an Op-amp with a 10V-supply, and the adjacent line is driven to negative video by one with a 5V-supply. In the next row line time, two Op-amps driving two adjacent data lines are exchanged.

In addition to output switches for the polarity modulation (switch A and B in Fig.5), another switch is necessary for this Op-amp sharing. As a result, three transistors are used at each channel as output switches as shown in Fig. 10, where the related control signals are also presented. The signal PM closes the output switch for the polarity modulation, and OA and OB choose an Op-Amp with a 10V- and a 5V-supply respectively. Op-amps with a 10V- and a 5V-supply use exactly the same circuits except for their supply voltages.

IV. EXPERIMENTS

A. Test Circuits and Conditions

We have fabricated test circuits and measured the power consumption. The block diagram of the test circuits is presented in Fig.11. The test circuits consist of 4 channels of Op-amps, two stepwise polarity modulators and output switches shown in Fig.5, control circuits, an integrated resistor string and external tank capacitors. The Op-amps of odd-numbered channels have a high-voltage supply V_{DDH} and those of even-numbered channels have a low-voltage supply V_{DDL}. In the dot inversion method, directions of the polarity modulation of odd- and even-numbered data lines are opposite, thus two polarity modulators are necessary. The control circuits generate control signals for switches
of the polarity modulators. A resistor string is not an essential part, but used only for convenience of the experiment. As a matter of fact, the tank capacitors can have their own voltages between V_H and V_L even without a resistor string, because the tank capacitors can be charged by V_H and V_L through data lines. That is, during the stepwise discharging, charges of the data lines flow into the tank capacitors. In the experiment the voltages of tank capacitors are initialized by a control signal STR just after the driver is turned-on. To prevent unnecessary static currents from flowing through the integrated resistor string, a switch controlled by STR is inserted between the integrated resistors and V_L, and closed only at the initial stage. Fig. 12 shows a microphotograph of the fabricated test chip. PMO and PME are polarity modulators for the odd- and even-numbered data lines respectively.

To evaluate the AC power saving efficiency, we measured the power consumption of both the stepwise and the conventional driving method using the test circuits shown in Fig.11. To measure the power consumption of the conventional driving method, the polarity modulators and the control circuits should be idle, and only the Op-amps drive data lines in the full
The total gate capacitance of the switches and the control circuits for the stepwise driving method was less than 1pF, while the capacitance of the data lines was over hundreds of pico-farads.

B. Results and Discussions

Fig.13 shows the output waveforms of the stepwise data driver circuits observed at the far end of a data line. The control signal PMS triggers the start of the stepwise polarity modulation, and the signal PM controls the output switches for the polarity modulation or video data writing. When a typical a-Si TFT model with an effective mobility of 0.8cm2/Vsec was used, HSPICE simulations revealed that it takes at least 10µsec to charge a pixel electrode from V_{H} to a video voltage $V_{BLACK,H}$. Another 2µsec is also necessary to set the voltage of data lines to V_{H} or VL before the stepwise polarity modulation starts as described in section II. Consequently, 10µsec of a row line time of 22µsec is available for the stepwise polarity modulation. The number of step and step time have been chosen to be 5 and 2µsec respectively through HSPICE simulations.

Fig.14, Fig.15 and Fig.16 show the measured power saving efficiencies of the median gray, black and white display images respectively, where it is easily found that the power saving efficiency of the stepwise driving method in a TFT-LCD is highly dependent upon a video range with a high-voltage supply, V_{DDH}. The AC power for stepwise driving which is supplied by V_{H}, VL, V_{DDH} and V_{DDL} is obtained and compared with that for conventional driving which is supplied only by V_{DDH}.

Measurements of the power consumption were carried out under the following conditions: The stepwise driving method is applied to a 14.1-inch diagonal TFT-LCD with XGA resolution. Typically the resistance of a data line has a value between 5kΩ and 10kΩ, and the capacitance has a value between 50pF and 100pF. An RC network modeling a data line was established by using a T3 model. The frame frequency was assumed to be 60Hz, leading to a row line time of about 22µsec. These measurement conditions are summarized in Table 2. As mentioned above, the test circuits have been fabricated in a standard CMOS process, so the voltage range of Fig.4 is inapplicable. The applied voltages for the experiment are listed in Table 3. Although the power saving efficiency is dependent upon the voltage range as easily found from equation (5) to (7), the feasibility of the stepwise driving method and the power saving efficiency can be evaluated. Although the total power consumption of the stepwise driving method generally includes the power consumed by the related switches and the control circuits [9], the power consumed by the related switches and the control circuits was not considered for simplicity in this experiment. It is because

Table 2. Measurement Condition of Fabricated Test Circuits

<table>
<thead>
<tr>
<th>Panel Size (inch)</th>
<th>14.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>XGA</td>
</tr>
<tr>
<td>Frame Frequency (Hz)</td>
<td>60</td>
</tr>
<tr>
<td>Line Time (µsec)</td>
<td>22</td>
</tr>
<tr>
<td>Data Line Resistance (kΩ)</td>
<td>5, 7.5, 10</td>
</tr>
<tr>
<td>Data Line Capacitance (pF)</td>
<td>66, 99, 132</td>
</tr>
</tbody>
</table>

Table 3. Applied Voltages for Measurement

<table>
<thead>
<tr>
<th>V_{DDH}</th>
<th>5V</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DDL} (=VCOM)</td>
<td>2.5V</td>
</tr>
<tr>
<td>V_{H}</td>
<td>4.5V</td>
</tr>
<tr>
<td>VL</td>
<td>0.5V</td>
</tr>
<tr>
<td>$V_{BLACK,H}$</td>
<td>5V</td>
</tr>
<tr>
<td>$V_{BLACK,L}$</td>
<td>0V</td>
</tr>
<tr>
<td>$V_{WHITE,H}$</td>
<td>4V</td>
</tr>
<tr>
<td>$V_{WHITE,L}$</td>
<td>1V</td>
</tr>
</tbody>
</table>
display image. While this driving scheme works well in case of median or dark gray images, the power saving efficiency is poor for white or bright gray images. It is because the polarity modulation between the two fixed voltages means unnecessary overcharging data lines when white or bright gray images are displayed. Therefore, further researches are required for reducing the power consumption for white or bright gray images. But, this stepwise driving is still meaningful, because the voltage levels of most display images can be assumed to stay near the median gray level on the average.

In Fig.14, Fig.15 and Fig.16, the dotted lines indicate the theoretical power saving efficiencies obtained using equation (3) to (7). In the experiment, however, two practical constraints, the insufficient step time and charge loss of tank capacitors, combine to make lower the power saving efficiency. For example, from equation (8) it is found that the theoretical power saving efficiency of the median gray display is 84.5% when the number of step is 5, V_{DD} is 10V and VH is 7.75V. However, the measurement results reveal that the actual power saving efficiency falls to about 78%. The plots in Fig. 14 to Fig.16 reflect the combined effect of the above-mentioned two constraints.

As explained in section II, the voltage drop of the tank capacitor C_{T4} has a great influence on the power saving efficiency, so it is meaningful to check the voltage drop of the tank capacitor C_{T4}. Because the applicable voltage range of the fabricated test circuits is limited to 5V, the voltage drop of the tank capacitor C_{T4} in a practical
Fig. 15. Measured Power Saving Efficiency of Black Display with Load Condition

![Fig. 15. Measured Power Saving Efficiency of Black Display with Load Condition](image1.jpg)

Fig. 16. Measured Power Saving Efficiency of White Display with Load Condition

![Fig. 16. Measured Power Saving Efficiency of White Display with Load Condition](image2.jpg)

Fig. 17. Simulated Voltage Waveform of Tank Capacitor C_{T4}

![Fig. 17. Simulated Voltage Waveform of Tank Capacitor C_{T4}](image3.jpg)

The voltage range of Fig. 4 is checked through HSPICE simulation. Fig. 17 shows that the voltage of the tank capacitor C_{T4} converges to about 6.38V from the initially charged 6.65V when the resistance and capacitance of a data line are 10kΩ and 132pF respectively. The convergence voltage of the tank capacitors has been calculated by L. "J." Svensson et al. [10]. Fig. 18 plots the voltage drop of the tank capacitor C_{T4} with the
C. DC Power Saving

The total DC power consumption of a conventional TFT-LCD, $P_{DC,CONV}$, can be easily calculated by using equation (9).

$$ P_{DC,CONV} = N_{DATA} I_Q V_{DD} $$ \hspace{1cm} (9)

where I_Q is a quiescent current of an Op-amp supplied by V_{DD}.

As explained in section III, half of the channels of Op-amps have a low voltage supply V_{DDL}. Therefore, the total DC power consumption using the proposed scheme, $P_{DC,PROP}$, can be obtained by using equation (10).

$$ P_{DC,PROP} = \frac{N_{DATA}}{2} I_{QL} V_{DDL} + \frac{N_{DATA}}{2} I_{QH} V_{DDH} $$ \hspace{1cm} (10)

where I_{QL} and I_{QH} are the quiescent currents supplied by V_{DDL} and V_{DDH} respectively.

As a result, the DC power saving efficiency can be obtained by dividing the equation (10) by the equation (9), resulting in the equation (11). I_Q and V_{DD} in equation (9) are the same as I_{QH} and V_{DDH} in equation (10) respectively.

$$ \frac{P_{DC,PROP}}{P_{DC,CONV}} = \frac{I_{QL} V_{DDL} + I_{QH} V_{DDH}}{2 I_{QH} V_{DDH}} $$ \hspace{1cm} (11)

Fig. 19 plots quiescent currents with the supply voltage of the author’s Op-amp[4] which was measured by using HP 4142B when the input voltage is half of...
each supply voltage. If V_{DDH} is 5V and V_{DDL} is 2.5V, the quiescent current is 5.1 μA and 1.8 μA respectively. From equation (11), the DC power saving efficiency is 41.2%.

V. CONCLUSIONS

Since the largest power consumption source called the AC power in a TFT-LCD comes from driving data lines, the stepwise charging method was applied for reducing the AC power. Experimental results reveal that the AC power saving efficiency is over 75% for a 14.1 inch-diagonal XGA TFT-LCD when the number of step is 5 and each step time is 2 μsec. Test chip was fabricated by using a 0.6 μm standard CMOS process. Another major power consumption source is the DC power due to quiescent currents in Op-amps. Thus, we have also proposed a simple and efficient architecture of driver circuits for reducing the DC power. That is, two neighboring channels share two Op-amps, and one of the two Op-amps has a lower supply voltage. Experimental results showed that over 40% of the DC power in data drivers was reduced by using this method.

ACKNOWLEDGEMENTS

This work was supported by the G7 Project of Korea. The authors wish to acknowledge Mr. Yoo-Chang Sung, Mr. Su-Hun Lim and Mr. Dong-Uk Lee at Hanyang University for their useful discussions.

REFERENCES

member on solid state devices from 1997 to 1998 and technical program co-chair of 1999 IEEE International Conference on VLSI and CAD. His research interests include interconnect and electrical noise modeling for system-level integration, wafer-scale chip size packages, smart power integrated circuit technologies and the driving methods and circuits for flat panel displays. He has authored and co-authored over 50 papers on the international journals and holds 33 U.S. patents.